I. (20 Points) Find the standard matrix for the stated composition of linear operators:
a. On $\mathrm{R}^{2}$, a reflection about the x -axis followed by an orthogonal projection on the $y$-axis. What is the image of the vector $(-2 ; 2)$ by this composition of linear operators?
b. On $\mathrm{R}^{3}$, a rotation of $60^{\circ}$ about the x -axis, followed by a projection on the yz plane, followed by a contraction with factor $\mathrm{k}=1 / 2$. What is the image of the vector $(1 ; 1 ; 3)$ ?
II. ( 20Points) Write the polynomial $p=t^{2}+4 t-3$ as a linear combination of the polynomials $p_{1}=t^{2}-2 t+5, p_{2}=2 t^{2}-3 t$ and $p_{3}=t+3$
III. (20 Points) Determine if the following vectors are linearly dependent. If they are, find a relation between them:

$$
\overrightarrow{u_{1}}=(2 ; 3 ; 7 ; 2), \overrightarrow{u_{2}}=(1 ; 1 ; 2 ; 0), \overrightarrow{u_{3}}=(0 ; 1 ; 1 ; 0) \text { and } \overrightarrow{u_{4}}=(2 ; 1 ; 4 ; 1)
$$

IV. (20 Points) In each part, Determine if $V$ is a vector space or not. In each case precise what are the axioms that fail?
a) $V=\left\{(x ; y) \in R^{2} / 2 x+3 y=0\right\}$ under the standard addition and scalar multiplication.
b) $\left\{\begin{array}{l}V=\text { Set of all triples of real numbers }(a ; b ; c), \text { with: } \\ \left\{\begin{array}{l}(a ; b ; c)+\left(a^{\prime} ; b^{\prime} ; c^{\prime}\right)=\left(a+a^{\prime} ; b+b^{\prime} ; c+c^{\prime}\right) \quad \text { Addition } \\ k(a ; b ; c)=\left(k^{2} a ; k^{2} b ; k^{2} c\right) \quad \text { Scalar Multiplication }\end{array}\right.\end{array}\right.$
V. (10 Points) Find a unit vector $\vec{u}$ that is orthogonal to both $\vec{v}=3 \vec{i}-\vec{j}+2 \vec{k}$ and $\vec{w}=4 \vec{i}-2 \vec{j}-\vec{k}$
VI. (10 Points) Prove the following identities : $(\vec{u}+k \vec{v}) \times \vec{v}=\vec{u} \times \vec{v}$
VII. (BONUS: 10 Points) Let $f=\cos ^{2} x$ and $g=\sin ^{2} x$. Show that the following functions lie in the space spanned by $f$ and $g$ :

$$
h=\cos 2 x \quad h=\frac{3}{2} \cos 2 x-\frac{1}{2} \quad h=2
$$

